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Abstract
Electrospinning is a simple and versatile method to produce nanofiber filters. However, owing to bending instability that 
occurs during the electrospinning process, electrospinning has frequently produced a non-uniform-thickness nanofiber filter, 
which deteriorates its air filtration. Here, an adaptive electrospinning system based on reinforcement learning (E-RL) was 
developed to produce uniform-thickness nanofiber filters. The E-RL accomplished a real-time thickness measurement of 
an electrospun nanofiber filter by measuring the transmitted light through the nanofiber filter using a camera placed at the 
bottom of the collector and converting it into thickness using the Beer–Lambert law. Based on the measured thickness, the 
E-RL detected the non-uniformity of the nanofiber filter thickness and manipulated the movable collector to alleviate the 
non-uniformity of the thickness by a pre-trained reinforcement learning (RL) algorithm. For the training of the RL algo-
rithm, the nanofiber production simulation software based on the empirical model of the deposition of the nanofiber filter 
was developed, and the training process of the RL algorithm was repeated until the optimal policy was achieved. After the 
training process with the simulation software, the trained model was transferred to the adaptive electrospinning system. By 
the movement of the collector under the optimal strategy of RL algorithm, the non-uniformity of such nanofiber filters was 
significantly reduced by approximately five times in standard deviation and error for both simulation and experiment. This 
finding has great potential in improving the reliability of electrospinning process and nanofiber filters used in research and 
industrial fields such as environment, energy, and biomedicine.
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Introduction

Electrospinning is a process, used for the facile and effec-
tive production of nanofibers and nanofiber filters [1–3]. The 
configuration of electrospinning consists of a high-voltage 
supplier, syringe, syringe needle, syringe pump, and metal 
collector. When a high voltage is applied between the 
syringe needle and the metal collector with the ejection of 
polymer solution through the syringe needle, the diameter 

of the solution jet decreases owing to the evaporation of 
the solvent and bending instability [2], thereby resulting in 
nanoscale fibers. During their flight toward the collector, 
electrospun nanofibers experience chaotic motion and they 
are deposited into a randomly interwoven nanofiber filter on 
the collector as shown in Fig. S1.

Electrospun nanofiber filters have been widely used in 
many laboratories and industrial fields owing to several 
advantageous properties such as high porosity, large surface-
to-volume ratio, low density [4], and large active surface 
area. For example, nanofiber filters have shown superior per-
formance in air filtration [5, 6], liquid filters, battery separa-
tors [7], and tissue membranes [8–12]. Furthermore, many 
companies have commercialized products using a nanofiber 
filter, such as electromagnetic interference (EMI) shielding 
film for protective clothes, skincare packs, automotive filters, 
HVAC filter, gas turbine filters, and N95/N99 masks.
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Various properties such as the type of materials, diam-
eter, and density [13, 14] of the nanofibers and the thick-
ness of the nanofiber filter influence the performance of 
electrospun nanofiber filters [1]. Such nanofiber properties 
could be controlled by changing electrospinning parameters 
such as applied voltage, flow rate, solvent, viscosity, solu-
tion concentration, temperature, and humidity. However, the 
deposition control for uniform thickness of the nanofiber 
filter would not be easily achievable by changing the elec-
trospinning parameters alone, although the thickness of the 
nanofiber filter plays a significant role in determining the 
efficiency of the material transport across the nanofiber fil-
ter [6, 15]. Current approaches to control the deposition of 
the nanofiber filter is majorly dependent on a simple and 
inaccurate technique of changing the electrospinning time, 
frequently producing a non-uniform-thickness nanofiber fil-
ter. Furthermore, bending instability could also lead to the 
non-uniform deposition of the nanofibers, causing a locally 
thin region of the nanofiber filter. This thin region of the 
nanofiber filter would exhibit a low filtration performance 
or mechanical strength and could induce flow concentration 
toward the region, thereby causing damage or degradation in 
the performance of the nanofiber filter. Therefore, develop-
ing an electrospinning system that can control the deposition 
of nanofibers is necessary to achieve uniform deposition.

Recently, the advance in machine learning (ML), a subset 
of artificial intelligence, facilitates ML-driven systems to 
resolve engineering challenges such as classification, diag-
nostics, optimization, and control. Conventional ML can be 
divided into supervised learning, unsupervised learning, 
and reinforcement learning (Fig. S2). Supervised learning 
algorithms such as artificial neural networks (ANN) [16], 
support vector machines (SVM) [17], k-nearest neighbors 
[18], decision trees (DTs) [19], and generalized linear model 
(GLM) [20] have been utilized as predictive models based 
on input data and labeled output data to solve the regression 
problems. In addition, convolution neural network (CNN) 
[21] shows high performance to solve classification prob-
lems. Unsupervised learning algorithms such as K-means 
[22], hierarchical cluster analysis (HCA), and t-distributed 
stochastic neighbor embedding (t-SNE) [23] have been 
used to cluster data with similarity, pattern, and difference 
without labeled output data (i.e., with only input data). RL, 
a subset of ML, is a decision-making algorithm based on 
behavioral psychology, which interacts with the environment 
in discrete time steps through trial-and-error methods. RL 
[24, 25] could effectively determine an optimal control strat-
egy in a random environment that provides uncertain infor-
mation; thus, RL has been widely utilized in many fields, 
including energy management [26], robots [27], and automo-
bile control [28], to determine the optimal control strategy.

In this study, an adaptive electrospinning system based 
on reinforcement learning (E-RL) is proposed for uniform 

deposition of nanofibers. Considering its effectiveness 
in finding an optimal control strategy, RL was utilized to 
achieve uniform deposition by optimally controlling the 
movable collector. Among various model-free RL algo-
rithms, one of the value function-based approaches, namely 
double deep Q-networks (DDQN) [24], was adopted in the 
electrospinning system. The DDQN, which showed great 
performance in playing Atari games [24], was designed to 
find an optimal control strategy for the movement of a col-
lector to decrease the non-uniformity of the nanofiber filter. 
In training the DDQN, the thickness of the nanofiber filter 
was measured in real time and utilized as a state for the 
DDQN. The thickness of the nanofiber filter was calculated 
on the basis of the Beer–Lambert law [29] from the light 
transmittance measured through a CCD camera placed at the 
bottom of the collector [29], In simplifying the electrospin-
ning system into the 1D problem, a two-parallel-metal-plate 
collector, which produced a nanofiber filter with the same 
thickness along the y-axis, was adopted. With the incorpo-
ration of the DDQN into the electrospinning system, the 
nanofiber filter with a uniform and desired thickness was 
achieved by moving the collector based on the optimal con-
trol strategy obtained from the DDQN. Finally, the improved 
uniformity and performance of air filtration of the nanofiber 
mat fabricated by E-RL were demonstrated, and such results 
were compared with those of the stationary and random 
modes.

Related Studies

Thickness Measurement Technique

Measuring the thickness is an important factor in producing 
nanofiber filters. Previous studies have measured the thick-
ness using thickness gauges, by direct contact or through 
optical microscopes by cross sectioning the nanofiber filter. 
A more accurate way is the bake–cut–microscope-measuring 
method [9]. First, the nanofiber filter was embedded in the 
resin to protect the nanofiber filter. Afterward, the resin-
embedded nanofiber filter was cross-sectioned, and the 
thickness was measured by using an optical microscope. 
Although these methods could provide an accurate thickness 
of the nanofiber filter, they could damage the nanofiber filter 
and degrade its functions. Furthermore, the thickness could 
be only measured after the fabrication of the nanofiber filter.

Control in the Deposition of Electrospun Nanofibers

Several studies have been conducted to control the deposi-
tion of electrospun nanofibers. These studies have primarily 
used external forces such as electrostatic force by manipu-
lating the electric field [30, 31], magnetic force by placing 
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permeant magnets, and mechanical force by using a rotating 
drum [6, 32] to achieve the controlled deposition of electro-
spun nanofibers. Although these methods have been proven 
successful in producing patterned or aligned nanofiber filters 
[33–35], the chaotic motion of electrospinning still hindered 
the production of a uniform-thickness nanofiber filter. By 
decreasing the voltage and reducing the distance between 
the syringe needle and metal collector, several studies have 
successfully reduced the bending instability [36] of the 
jet through near-field electrospinning [37, 38] and direct-
write electrospinning [39]. However, these electrospinning 
methods have low productivity and produce extremely thin 
nanofiber filters, which cannot be utilized as an air filter.

Background

Reinforcement Learning

RL [40] is a type of ML algorithms for training an agent, 
interacting with the environment. RL primarily consists 
of an agent and environment; the agent (learner) dynami-
cally interacts with the environment and obtains a reward 
based on its state. The agent selects an action a , which is the 
movement of the movable collector, based on the informa-
tion about the state s in the environment at the current time 
t  . At a subsequent time t + 1 , the agent receives a reward 
rt , and the state s is changed to a new state (next state) s′ 
as a result of the action a . At each time, the agent follows 
a policy � , which maps the state to the action to maximize 
the cumulative reward. The policy that maximizes the cumu-
lative reward is called the optimal policy �∗ , and RL is a 
sequential decision-making process that finds the optimal 
policy �∗ through a series of interactions between the agent 
and the environment.

In this study, the RL algorithm that is trained to minimize 
the thickness variation of an electrospun nanofiber filter was 
adopted. The RL algorithm assumed the electrospinning pro-
cess as the environment, and the state s was calculated on the 
basis of the measured thickness of the nanofiber filter. The 
agent of the RL algorithm manipulated the position of the 
movable collector (action, a ) based on the optimal policy for 
the minimization of the thickness variation of the nanofiber 
filter.

Double Deep Q‑Network

Model-free RL algorithms that could identify the optimal 
policy can be divided into value function-based [41] and 
policy-based approaches. This study used a value function-
based approach of deep Q-network that achieved human-
level control of Atari games [24]. The deep Q-network is 
grounded by training an agent based on an action-value 

function that provides the expected discounted return Rt for 
an action a with the environment of state s . The expected 
discounted return Rt is defined as 

Rt =
∑end

k=t
�k−trk

 with a 

discount factor of γ ∈ [0, 1] . In this study, the discount factor 
was set to 0.99. The action-value function, also called known 
as the Q-function Q(s, a) (Eq. 1), represents the expected 
utility of action a at a state s following policy �:

The optimal action is a = argmaxa∈AQ
∗(s, a). In dealing 

with the high-dimensional or continuous state space, a deep 
neural network was utilized to approximate the Q-function 
as follows: Q(s, a) = Q(s, a;�) , where � is a parameter vec-
tor of the approximator. In estimating this network, we used 
Q-learning with double deep neural networks of the main 
Q-network Q(s, a;�) and target Q-network Q̂(s, a; �− ), which 
is called known as double deep Q-learning or DDQN [42]. 
In estimating the DDQN, the main network Q(s, a;�) is 
updated by minimizing the loss function Li

(

�i
)

 (Eq. 2) and 
using the stochastic gradient descent method at iteration i:

Given that the rapid fluctuation of the Q-function Q(s, a) 
often causes instability, the target network is frozen when 
updating the main network over a given k time steps and 
updated at every k time steps by copying the parameter of 
the main network to that of the target network (�− = � ). 
During the learning process, the ε-greedy method [43] was 
utilized to balance exploration and exploitation, where the 
agent selects the action with the greatest estimated value 
with a probability of 1 − ε (exploitation) and random actions 
with a probability of ε (exploration). Furthermore, the expe-
rience replay technique [44] was adopted to reduce the over-
fitting of a local region of the state space. This technique 
stores previous experiences in a replay buffer, and the update 
of the main network is performed using a uniformly sampled 
mini-batch from the replay buffer.

Methodology

Real‑Time Thickness Measurement Technique

Real-time thickness measurements were performed on the 
basis of the previously reported system [45]. The flat LED 
plate on top of the chamber illuminated the uniform light 
to the nanofiber filter on the collector. Two cases of light 
intensity with and without passing through the nanofiber 
filter were measured by the CCD camera placed at the bot-
tom of the collector. In calculating the light transmittance 

(1)Q�(s, a) = E
[

Rt|St = s,At = a
]

.

(2)

L(𝜃) = Es,a,r,s�

[

(

r + 𝛾 max
a�

Q̂
(

s�, a�;𝜃−
)

− Q(s, a;𝜃)
)2

]

.
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of the nanofiber filter, the light intensity passing through the 
nanofiber filter was divided by the measured light intensity 
without the nanofiber filter. The light transmittance was con-
verted into the thickness of the nanofiber filter based on the 
Beer–Lambert law (Eq. (3)).

where T is the light transmittance, and h is the thickness of 
the nanofiber filter. Based on the Beer–Lambert law and 
calculated light transmittance at each pixel, the thickness of 
the nanofiber filter was evaluated using Eq. (4):

where x is the x-axis position of the nanofiber filter cor-
responding to the pixel of the bottom image from the CCD 
camera, and h(x) is the thickness of the nanofiber filter at 
position x . Although the y-axis variation of the thickness can 
be detected from this measurement system, the thickness of 
the nanofiber filter fabricated on the basis of a two-parallel-
metal-plate collector varied only along the x-axis. Thus, the 
thickness was assumed as a function of the x position.

In the validating the real-time thickness measurement 
technique, the thickness of the nanofiber filter was meas-
ured by the bake–cut microscope-measuring method [9]. The 

(3)T = e−�h,

(4)h(x) = − ln T(x)∕�,

nanofiber filter was immersed in a mixture of polydimethyl-
siloxane (PDMS) monomer and curing agent at a weight 
ratio of 10:1 and baked in a dry oven for 24 h at 40 °C. The 
PDMS-embedded nanofiber filter was cut along the x-axis 
to measure the thickness based on the cross-sectional image 
by using a microscope (Olympus BX53F2, Olympus, Japan).

The proposed real-time thickness measurement based on 
light transmittance could be applied to the translucent or 
light-transmitting materials; thus, it could be applied to all 
sorts of materials/electrospinning processes. However, con-
sidering that most of the electrospun nanofiber filters have 
high porosity and thin thickness, this measurement technique 
could be widely utilized for electrospun nanofiber filters.

Formulation of DDQN

A model-free RL framework of DDQN was implemented in 
the nanofiber filter production system to produce a nanofiber 
filter with a uniform thickness, namely, E-RL. Figure 1 illus-
trates the framework of the E-RL. The DDQN in the E-RL was 
trained to find the optimal policy based on the states, actions, 
and rewards. The DDQN was structured as a deep neural 
network with the parameters listed in Table 1. The action of 
the RL was set to the movement of the collector. Although 
the collector movement has a continuous action space, the 

Fig. 1   Illustration of the DDQN-based nanofiber filter production framework (E-RL)
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movement of the collector was defined as a discrete action 
space to simplify the E-RL. We found that if RL has a large 
number of possible actions, then a single action generally 
moves the movable collector with a small distance, which does 
not effectively change the deposition behavior of the nanofiber 
filter for the generation of the uniform-thickness nanofiber fil-
ter. In addition, if RL possesses a small number of possible 
actions, then the distance gap between the possible actions is 
too large to move the movable collector to the desired position. 
Thus, to alleviate the non-uniformity of the nanofiber filter, 
an action space of the movable collector was set 11 equally 
spaced positions through trial and error. The states of the RL 
were designed on the basis of the thickness of the nanofiber 
filter and the difference between the current thickness and the 
previous thickness before the one step. The thickness of the 
nanofiber filter provided the information about the non-uni-
formity of the nanofiber filter. Moreover, the thickness differ-
ence provided the information about the deposition behavior of 
electrospun nanofibers. Based on the current state and action, 
the immediate reward,  r(s) , is defined using Eqs. (5) and (6).

where hs(x) is the current thickness of the nanofiber filter in 
the state s ; ht is the target thickness of the nanofiber filter, 
and N  represents the maximum possible number of steps 
that can be taken in one episode. In the case of the target 

(5)
if �

[

hs(x)
]

< ht,

r(s) =

{

1 − var
[

hs(x)
]

−h2
t
∕N, if 1 − var

[

hs(x)
]

< 0
,

(6)

if �
[

hs(x)
]

> ht,

r(s) =

{

1 − var
[

hs(x) − ht
]

−1, if 1 − var
[

hs(x) − ht
]

< 0
,

thickness of 10 µm, the maximum possible number of steps, 
N , was set to 1000. The reward system was designed as fol-
lows. During the nonterminal state 

(

�
[

hs(x)
]

< ht
)

 , a reward 
of r(s) = 1 − var

[

hs(x)
]

 was assigned, and if var
[

hs(x)
]

 was 
higher than 1, then the reward of r(s) = −h2

t
∕N was assigned 

as a penalty for the unnecessary increase in the total steps. 
At the terminal state when the average current thickness 
�
[

hs(x)
]

 in the state s exceeds the target thickness ht , a ter-
minal reward is assigned, exhibiting the highest value of 1 
when the current and target thicknesses are exactly the same 
and decreasing by the variance of the difference between 
hs(x) and ht . In addition, if the variance of the difference 
between hs(x) and ht is higher than 1, then the fabricated 
nanofiber filter is considered non-uniform, and the terminal 
reward is assigned as − 1. As the variance of the difference 
between hs(x) and ht decreases, the thickness of the nanofiber 
filter becomes more uniform, and the reward reaches 1.

Numerous electrospinning over 100,000 times is required 
to train RL. Considering that a single electrospinning pro-
cess takes around 30 min, the training of the RL through 
experiments needs 50,000 h (around 6 years). Thus, as a 
method to dramatically reduce the time required for training 
the RL, production simulator software was developed. The 
production simulator software was designed on the basis of 
the empirical model of the deposition behavior of electro-
spun nanofibers on the two-parallel-metal-plate collector. 
The production simulator software was used to collect data-
sets consisting of s , a , r , and s′ for training, and they were 
saved in the replay buffer before the training. During train-
ing, the mini-batch was randomly selected from the replay 
buffer to calculate the loss function. In evaluating the loss 
function, the mini-batch was used to calculate Q

(

s, a; �i
)

 in 
the main Q-network and maxa� Q̂

(

s�, a�; 𝜃−
i

) in the target 
Q-network. Subsequently, the main Q-network is updated by 
minimizing the loss function by using the gradient descent 
method with a learning rate α of 0.00025. The learning rate 
is defined as the size of a gradient descent step. However, 
considering that the optimal policy is not derived with only 
one step of training, the dataset collection and training pro-
cess were repeated until the optimal policy was obtained 
(Fig. 1).

Experimental Sections

Nanofiber Filter Production System

The schematic and photograph of the nanofiber filter pro-
duction system are shown in Fig. 2a, b, respectively. The 
detailed configuration of the proposed nanofiber filter 
production system, which is similar to our previous study 
[45], includes a nanofiber generation system, movable 

Table 1   Structure of the network

Layer Number of neurons per 
layer

Activation

Input layer 2 × 890 Relu
Hidden layer 1 1024 Relu
Hidden layer 2 256 Relu
Drop out
Batch normalization
Hidden layer 3 256 Relu
Hidden layer 4 128 Relu
Drop out
Batch normalization
Hidden layer 5 128 Relu
Hidden layer 6 64 Relu
Hidden layer 7 32 Relu
Output layer 11 Softmax
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metal collector, and real-time thickness measurement 
system. The nanofiber generation system has a configura-
tion similar to that of the conventional electrospinning of 
a syringe pump (NE300, New Era, USA), a 3 mL plastic 
syringe with a 23-gauge metal needle, a high-voltage sup-
plier (HV30, NanoNC, South Korea), and an electrospin-
ning chamber. Its key feature is the movable metal collec-
tor composed of a two-parallel-metal-plate collector with 
a 3 cm width, a 3D-printed collector holder, and an auto-
matic XY stage. The movable collector is shown in Fig. 2c, 
d. The width of a two-parallel-metal-plate collector could 
be larger as shown in Fig. S3. Because the electrospinning 
time was exponentially increased as widening the width of 
the nanofiber filter, the effective width for the two-parallel-
metal-plate collector would be below several centimeters. 
The real-time thickness measurement system consists of a 
flat LED plate located on top of the electrospinning cham-
ber and a CCD camera (oCam-1CGN-U-T, WITHROBOT, 
South Korea) located below the movable collector.

Nanofiber Filter Production

Nanofiber filter production was conducted on the basis of 
a previous study [46]. Gelatin from bovine skin (type B, 
Sigma-Aldrich, USA), polycaprolactone (PCL) pellets 
(Mn = 80,000 g  mol−1, Sigma-Aldrich, USA), 2,2,2-tri-
fluoroethanol (TFE), and acetic acid were used for PCL/
gelatin solutions. 10% w/v PCL/TFE and 10% w/v gelatin/
TFE were prepared, and then the solutions were mixed in a 
50:50 mass ratio with 10 µL of acetic acid (0.1% of TFE). 
The mixed solutions were stirred for 12 h prior to process-
ing to ensure thorough mixing. The PCL/gelatin solution 
was placed in a 3 mL plastic syringe with a 23-gauge metal 
needle and ejected through the metal needle at a constant 
flow rate of 0.5 mL h−1 using a syringe pump. After connect-
ing a (+) electrode to a metal needle and a (−) electrode to 
the movable collector, 20 kV was applied between the two 
electrodes to deposit the nanofibers on the movable collector 
and form a nanofiber filter. When a high voltage is applied 

Fig. 2   a Schematic and b photograph of E-RL. Photograph of a movable two-parallel-metal collector without (c) and with nanofiber filter (d)
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between the metal needle and the movable collector, a Taylor 
cone is induced at the tip of the metal needle, and a polymer 
jet is ejected from the tip of the Taylor cone. Given the high 
voltage, the polymer jet carries a high surface charge, caus-
ing electrostatic repulsion and bending instability. Its diam-
eter is decreased to the nanoscale by electrostatic repulsion 
and solvent evaporation, thereby forming nanofibers. The 
bending instability causes the nanofibers from the polymer 
jet to be randomly deposited on the collector. Consequently, 
if the movable collector is stationary, then the nanofiber filter 
has been frequently produced with a non-uniform thickness.

Production Simulation Software

The simulator software was developed on the basis of the 
empirical model of the deposition behavior of electrospun 
nanofibers on the two-parallel-metal-plate collector. The 
deposition behavior was assumed to be a Gaussian distribu-
tion with an altering center and a standard deviation [45]. By 
empirically acquiring the parameters for the altering center 
and standard deviation of the Gaussian distribution, the soft-
ware simulated the deposition of a nanofiber filter produced 
by the nanofiber filter production system, thereby generat-
ing a bottom-view image of the nanofiber filter similar to 
that from a CCD camera. The light transmittance calculated 
using the bottom-view image was converted into thickness 
using the Beer–lambert law.

Performance Evaluation of the E‑RL

After training the simulation software, the DDQN model 
was transferred to the production simulation software and 
E-RL with a target thickness of 10 µm. The performance of 
the E-RL was numerically and experimentally confirmed 
by comparing it with the stationary and random modes. In 
the stationary mode, the collector accumulated electrospun 
nanofibers in a fixed center position without any movement. 
In the random mode, the collector moved in random direc-
tions during electrospinning. Finally, in the DDQN mode, 
the collector moved in accordance with the optimal action 
obtained from the trained DDQN model based on the meas-
ured thickness of the nanofiber filter.

Air Filtration

The air filtration efficiency of the nanofiber filter fabri-
cated through electrospinning was measured at four posi-
tions: first, second, third, and fourth of the nanofiber filter. 
Incenses were burned to generate aerosol particles, and the 
existence of PM2.5 was confirmed by using optical particle 
size (Model-3330, TSI) as shown in Fig. S4. The PM parti-
cles, which were produced by burning incense, flowed from 

the right to the left beaker and then filtered at each position 
of the nanofiber filter. In measuring the concentration of 
incident and filtered PM2.5, laser particle sensors (PM2008, 
CUBIC, China) were positioned in the right and left beakers.

Results and Discussion

Nanofiber Filter Production

Electrospinning on a two-parallel-metal-plate collector pro-
duced nanofiber filter on and in-between two metal plates. 
Figure 3a shows the bottom-view image of the nanofiber 
filter obtained using the CCD camera. The bright region 
of the bottom-view image showed high light transmittance 
and low thickness, whereas the dark region showed a lower 
light transmittance and thicker nanofiber filter. Thus, the 
gradation of the color of the bottom-view images indicates 
the non-uniform thickness of the nanofiber filter. Given that 
the two-parallel-metal-plate collector generally produced 
aligned nanofiber filters [47], the variation of the light 
transmittance and thickness in the y-axis direction would 
be negligible. Thus, the thickness of the nanofiber filter was 
simplified as a function of the x-axis position. Due to the 
bending instability and varying jetting direction of the mul-
tiple modes of jet, the deposition behavior of electrospun 
nanofibers was inconsistent as shown Fig. S5. Such incon-
sistent deposition behavior would not be easily modeled by 
conventional control theory, and thus, the RL algorithm was 
adopted to control the deposition of electrospun nanofibers. 
Figure 3b shows the conversion of light transmittance to the 
thickness of the nanofiber filter using the Beer–Lambert law 
along the x-axis. The nanofiber fabrication of the nanofiber 
filter production system was confirmed through the SEM 
image of the nanofiber filter (Fig. 3c).

Real‑Time Thickness Measurement System

In measuring the thickness of the nanofiber filter, many 
studies embedded the nanofiber filter in PDMS and 
measured the thickness of the nanofiber filter from the 
cross-sectional view [9]. However, the embedding pro-
cess damaged the nanofiber filter and hindered its utili-
zation as a porous membrane for air/liquid filter, battery 
separator, and biomedical scaffold. As a non-destructive 
technique, the transmitted light through the nanofiber 
filter was measured and converted into the thickness of 
the nanofiber mat based on the Beer–Lambert law, which 
states the relationship between the attenuation of light and 
thickness of the medium (Fig. 3d). For simplification, the 
nanofiber filter was assumed as a homogenous medium. 
By fitting a curve to the measured data of the light trans-
mittance and the thickness (Fig. 3e), we calculated the 
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attenuation coefficient µ of 0.058 µm−1. Approximately, 
83% of the measured thickness data were in the area with 
a ± 20% deviation of � (Fig. 3e). When the thickness of the 
nanofiber mat became 30 µm, the resolution was around 
0.77 µm because the CCD camera has an image depth of 
8-bit. When a higher-bit depth CCD camera and brighter 
light source are used, higher resolution in the thickness 
measurement can be achieved even with thicker nanofiber 
filter.

Changes in electrospinning parameters such as applied 
voltage, flow rate, viscosity, solvent, solution concentra-
tion, temperature, and humidity influence the property 
of electrospun nanofibers such as diameter, density, and 
porosity, and affect the transmission of light through 
the nanofiber filters. The attenuation coefficient of the 
Beer–Lambert law was determined based on the property 
of electrospun nanofibers. Thus, by finding an appropriate 

attenuation coefficient for each solvent, the thickness of 
the nanofiber filter produced with different solvents would 
be estimated based on the Beer-Lambert law.

Training of the DDQN

The computer consisted of Intel® Core™ i5-8500 CPU @ 
3.00 GHz and NVIDIA GeForce RTX3060 GPU. The RL 
algorithm was achieved with Python version 3.8.10. under 
the visual studio code framework. The training process was 
repeated 100,000 times and took around 4 days. In evaluat-
ing the uniformity of a produced nanofiber filter during train-
ing, the terminal variance, which is the variance between the 
target thickness and the current thickness at the end of the 
fabrication, was introduced. The terminal variance was nega-
tively correlated with the non-uniformity of the nanofiber filter 
thickness. When the thickness of the nanofiber filter is the 

Fig. 3   a Bottom-view image of the nanofiber filter, the scale bar indi-
cates 1 cm, and b is converted to the thickness of the nanofiber filter 
along the x-axis by Beer–Lambert law. c SEM image of nanofiber fil-

ter. The scale bar indicates 10 µm. d Schematic for real-time thick-
ness measurement based on Beer–Lamber law and e Curve of the 
light transmittance versus the thickness of nanofiber filter
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same as the target thickness and perfectly uniform, the termi-
nal variance becomes 0. However, as the non-uniformity of 
the nanofiber filter increases, the terminal variance increases 
by the amount of variance between the target and the current 
thickness of the nanofiber filter. Figure 4a, b shows the change 
in terminal variance in the case of stationary, random, and 
DDQN modes during training. The training of DDQN was 
conducted as the episode processed (Fig. 4a). As shown in 
Fig. 4a, in the beginning of the training process, the high value 
of the terminal variance was observed, but low terminal vari-
ance was consistently achieved after 95,000 episodes because 
of continuous training. The terminal variance of the suffi-
ciently trained DDQN mode (from 95,000 to 95,999 episodes) 

was compared with that of the other modes (Fig. 4b). In the 
stationary mode, the terminal variance was maintained at a 
high value throughout all the episodes. In the random mode, 
the terminal variance fluctuated between the high terminal 
variance of the stationary mode and the low terminal variance 
of the sufficiently trained DDQN mode. However, the random 
mode could hardly ensure the reliability of the uniformity of 
the nanofiber filter thickness because the terminal variance 
significantly varied at each episode. In contrast, the trained 
DDQN mode produced uniform-thickness nanofiber filters 
with a low terminal variance during more than 1000 episodes. 
This result demonstrated that the E-RL has a superior ability 
to produce a uniform nanofiber filter, validating the effective-
ness of the DDQN to determine the optimal policy (Fig. S6).

DDQN‑Based Simulation Model

After transferring the trained DDQN to the nanofiber pro-
duction simulation software, the performance of DDQN 
mode was verified by comparing it with the stationary and 
random modes. Figure 5 shows the bottom-view image 
of the nanofiber filter generated by the numerical simula-
tion with and without DDQN. In the stationary mode, the 
bottom-view images of the nanofiber filter show enlarged 
gradation as the number of steps increased, which indicates 
that electrospun nanofibers were non-uniformly accumulated 
on the collector (Fig. 5a). In the random mode, the grada-
tion of the bottom-view images of the nanofiber filter was 
slightly alleviated compared with that of the stationary mode 
(Fig. 5b). In the DDQN mode, the bottom-view images of 
the nanofiber filter show a high level of uniformity through-
out all the steps (Fig. 5c). These results indicated that the 
DDQN mode exhibited superior performance in producing 
a uniform-thickness nanofiber filter.

For quantitative analysis, Fig. 5d, e shows the standard 
deviation and normalized squared error (NSE) with and 
without DDQN. The degree of uniformity was determined 
using the standard deviation value of the nanofiber filter. 
In the stationary mode, the standard deviation continu-
ously increased at the highest rate. In the random mode, the 
increased rate of the standard deviation was lower than that 
of the stationary mode, but it eventually increased. In the 
DDQN mode, the standard deviation was lower and stead-
ier than that in the other two modes. The NSE in the three 
modes also showed similar trend of the standard deviation 
results. The NSE decreased at a similar rate before approx-
imately 60 steps for all cases. However, in the stationary 
mode, the decrease of the NSE eventually stopped, and the 
NSE increased after approximately 60 steps. In the random 
and DDQN modes, the NSE continuously decreased until 
the end of the episode. However, in the random mode, the 
terminal value was higher than that of the DDQN mode.

Fig. 4   a Terminal variance for the DDQN mode. b Terminal variance 
for stationary mode, random mode, and untrained (1–1000 episode) 
and trained DDQN mode (from 95,000 to 95,999 episodes) with 
respect to episodes
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Adaptive Electrospinning System 
for Uniform‑Thickness Nanofiber Filter

The performance of the DDQN mode was experimentally 
validated by the transfer learning of the trained DDQN into 
the electrospinning system, namely, E-RL. Figure 6 shows 
the bottom-view images experimentally obtained from the 
nanofiber filter production system in the stationary, ran-
dom, and DDQN modes. The experimental results from the 
nanofiber filter production system showed a similar trend 
as that of the numerical simulation. In the stationary mode, 
the bottom-view images of the nanofiber filter exhibited 
the highest non-uniform gradation throughout all the steps 
(Fig. 6a). In the random mode, the bottom-view images 
showed a non-uniform gradient, but they were slightly more 
uniform than in the stationary mode (Fig. 6b). In the DDQN 
mode, the bottom-view images of the nanofiber filter showed 
a high level of uniformity regardless of the step (Fig. 6c).

Figure 6d shows the standard deviation of the thickness 
of the nanofiber filter produced based on the stationary, ran-
dom, and DDQN modes. In the stationary mode, the stand-
ard deviation was continuously increased, and it showed the 
highest value at the end of the step. In the random mode, 

although the standard deviation values slightly decreased, it 
showed a higher trend than the DDQN mode. In the DDQN 
mode, the standard deviation was continuously lower than 
1. At the end of the steps, the standard deviation of the 
nanofiber filter thickness with the DDQN mode was approxi-
mately five times lower than that of the stationary mode and 
two times lower than that of the random mode. Figure 6e 
shows a graph of the NSE for the three modes. In the station-
ary mode, the NSE initially decreased and gradually satu-
rated at a certain value. In the random and DDQN modes, 
the NSE continued to decrease at a similar rate. However, 
the NSE of the random mode was higher than that of the 
DDQN mode similar to the results obtained from the simula-
tion model. The NSE ultimately decreased five times lower 
in the DDQN mode compared with the stationary mode and 
two times lower than the random mode, which indicates that 
the E-RL showed an outstanding ability to produce a uni-
form nanofiber filter.

The production performance of a uniform-thickness 
nanofiber filter could be explained by the following reasons. 
In the stationary mode, the nanofibers largely accumulated 
in a narrow area of the collector following a Gaussian dis-
tribution. In the random mode, the nanofiber filter thickness 

Fig. 5   Performance evaluation of the simulation model. Bottom-view images of the stationary mode (a), random mode (b), and DDQN mode 
(c). d Comparison of the standard deviation (σ) and e normalized squared error (NSE) between the three modes. All scale bars indicate 1 cm
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was slightly more uniform than that in the stationary mode 
because of the random movement of the collector. However, 
the nanofibers remained non-uniformly accumulated on the 
collector because the collector moved without a specific 
strategy. In the DDQN mode, the nanofibers were uniformly 
accumulated because the RL-based moving collector fol-
lowed the optimal policy.

Air Filtration of the Nanofiber Filter

For comparison of three modes of the stationary, random 
and DDQN modes, an air filtration experiment was con-
ducted. The air filtration experimental setup and schematic 
of the nanofiber filter with four positions are shown in 
Fig. 7a, b, respectively. The thickness and filtration effi-
ciency at four positions with one-representative sample 
are presented in Fig. 7c. In the DDQN mode, the filtration 
efficiency at the four positions exhibited high and uniform 
performance, while in the other two modes, the filtration 
efficiency at the fourth position is much lower than that at 
the other three positions. By comparing the thickness of 
each position and the filtration efficiency, we confirmed 

that the uniformity of the thickness of the nanofiber fil-
ter affects the uniformity of the filtration efficiency for 
each position. Figure 8 shows the standard deviation of 
thickness and filtration efficiency among four positions 
for each mode. The standard deviation of thickness among 
four positions for the DDQN, random, and stationary mode 
was 0.747, 1.386, and 3.608, respectively. The standard 
deviations of the filtration efficiency for the three modes 
were 2.004, 11.5, and 22.552, respectively. The standard 
deviation of the filtration efficiency of the DDQN mode 
was approximately 5.74 and 11.3 times lower than that of 
the random and stationary mode, respectively. This result 
indicated that the non-uniform thickness of the nanofiber 
filters produced with the stationary and random modes 
detrimentally affected the filtration efficiency. Further-
more, the thickness difference causes the flow concen-
tration toward the thin–thickness region that showed low 
filtration efficiency and rapid degradation in filtration per-
formance of the nanofiber air filter. Thus, the suggested 
E-RL is effective in producing a uniform nanofiber filter 
for the uniform performance of the air filter. Furthermore, 
apart from the uniformity, the E-RL produces electrospun 

Fig. 6   Performance evaluation of the nanofiber filter production in 
real time during electrospinning. Bottom-view images of the station-
ary mode (a), random mode (b), and DDQN mode (c). d Compari-

son of standard deviation (σ) and e normalized squared error (NSE) 
between the three modes. All scale bars indicate 1 cm



	 Advanced Fiber Materials

1 3

nanofiber filters with superior air filtration, considering 
that many previous studies on nanofiber filters have shown 
high-efficiency air filtration.

Conclusion

In this study, E-RL was developed to produce uniform-thick-
ness nanofiber filters. The E-RL accomplishes the real-time 
measurement of thickness by using the Beer–Lambert law, 
which has an exponential relationship between light trans-
mittance and thickness. Using the production simulation 

Fig. 7   a Photograph of the setup of the filtration experiment and b 
schematic of the nanofiber filter test. c The filtration efficiency and 

thickness at the first, second, third, and fourth positions for the station-
ary, random, and DDQN mode

Fig. 8   Standard deviation of the thickness and filtration efficiency
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software, the training process could be accelerated, and the 
DDQN was trained to determine the optimal policy, which 
was the movement strategy for the collector to minimize the 
standard deviation and NSE of the thickness uniformity. The 
trained DDQN model was applied to the production simu-
lation software and E-RL. Consequently, the uniformity in 
the thickness of the nanofiber filter was evidently improved 
for both cases—production simulation software and E-RL. 
Therefore, the E-RL is expected to greatly improve the pro-
ductivity and reliability of the nanofiber filter.

E-RL was applied to electrospinning with a two-parallel-
metal-plate collector, which could be simplified into the 
1D case. For application to a wider range of industries and 
research fields, the scaling up is one of the important issues 
of E-RL. However, applying the real-time thickness meas-
urement to larger collectors, such as 2D metal collectors, is 
extremely difficult. One way to overcome such limitations 
is the implementation of a transparent collector, such as a 
transparent film (e.g., ITO film), metal mesh collector, and an 
electrolyte solution, to achieve real-time thickness measure-
ment of 2D nanofiber filters for E-RL. By adopting this idea, 
E-RL could be incorporated with the electrospinning process 
on a larger transparent collector. Furthermore, the transparent 
film or metal mesh is expected to be applied to scaled-up elec-
trospinning system such as a continuously running conveyor 
belt and a needless spinning system. Considering the wide 
utilization of electrospun nanofiber filters, the implementa-
tion of the E-RL to the scaled-up electrospinning system will 
have a broad impact in the field of electrospinning and related 
application in both industries and research.
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