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Abstract

Electrospinning is a simple and versatile method to produce nanofiber filters. However, owing to bending instability that
occurs during the electrospinning process, electrospinning has frequently produced a non-uniform-thickness nanofiber filter,
which deteriorates its air filtration. Here, an adaptive electrospinning system based on reinforcement learning (E-RL) was
developed to produce uniform-thickness nanofiber filters. The E-RL accomplished a real-time thickness measurement of
an electrospun nanofiber filter by measuring the transmitted light through the nanofiber filter using a camera placed at the
bottom of the collector and converting it into thickness using the Beer—Lambert law. Based on the measured thickness, the
E-RL detected the non-uniformity of the nanofiber filter thickness and manipulated the movable collector to alleviate the
non-uniformity of the thickness by a pre-trained reinforcement learning (RL) algorithm. For the training of the RL algo-
rithm, the nanofiber production simulation software based on the empirical model of the deposition of the nanofiber filter
was developed, and the training process of the RL algorithm was repeated until the optimal policy was achieved. After the
training process with the simulation software, the trained model was transferred to the adaptive electrospinning system. By
the movement of the collector under the optimal strategy of RL algorithm, the non-uniformity of such nanofiber filters was
significantly reduced by approximately five times in standard deviation and error for both simulation and experiment. This
finding has great potential in improving the reliability of electrospinning process and nanofiber filters used in research and
industrial fields such as environment, energy, and biomedicine.
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Introduction

Electrospinning is a process, used for the facile and effec-
tive production of nanofibers and nanofiber filters [1-3]. The
configuration of electrospinning consists of a high-voltage
supplier, syringe, syringe needle, syringe pump, and metal
collector. When a high voltage is applied between the
syringe needle and the metal collector with the ejection of
polymer solution through the syringe needle, the diameter
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of the solution jet decreases owing to the evaporation of
the solvent and bending instability [2], thereby resulting in
nanoscale fibers. During their flight toward the collector,
electrospun nanofibers experience chaotic motion and they
are deposited into a randomly interwoven nanofiber filter on
the collector as shown in Fig. S1.

Electrospun nanofiber filters have been widely used in
many laboratories and industrial fields owing to several
advantageous properties such as high porosity, large surface-
to-volume ratio, low density [4], and large active surface
area. For example, nanofiber filters have shown superior per-
formance in air filtration [5, 6], liquid filters, battery separa-
tors [7], and tissue membranes [8—12]. Furthermore, many
companies have commercialized products using a nanofiber
filter, such as electromagnetic interference (EMI) shielding
film for protective clothes, skincare packs, automotive filters,
HVAC filter, gas turbine filters, and N95/N99 masks.
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Various properties such as the type of materials, diam-
eter, and density [13, 14] of the nanofibers and the thick-
ness of the nanofiber filter influence the performance of
electrospun nanofiber filters [1]. Such nanofiber properties
could be controlled by changing electrospinning parameters
such as applied voltage, flow rate, solvent, viscosity, solu-
tion concentration, temperature, and humidity. However, the
deposition control for uniform thickness of the nanofiber
filter would not be easily achievable by changing the elec-
trospinning parameters alone, although the thickness of the
nanofiber filter plays a significant role in determining the
efficiency of the material transport across the nanofiber fil-
ter [6, 15]. Current approaches to control the deposition of
the nanofiber filter is majorly dependent on a simple and
inaccurate technique of changing the electrospinning time,
frequently producing a non-uniform-thickness nanofiber fil-
ter. Furthermore, bending instability could also lead to the
non-uniform deposition of the nanofibers, causing a locally
thin region of the nanofiber filter. This thin region of the
nanofiber filter would exhibit a low filtration performance
or mechanical strength and could induce flow concentration
toward the region, thereby causing damage or degradation in
the performance of the nanofiber filter. Therefore, develop-
ing an electrospinning system that can control the deposition
of nanofibers is necessary to achieve uniform deposition.

Recently, the advance in machine learning (ML), a subset
of artificial intelligence, facilitates ML-driven systems to
resolve engineering challenges such as classification, diag-
nostics, optimization, and control. Conventional ML can be
divided into supervised learning, unsupervised learning,
and reinforcement learning (Fig. S2). Supervised learning
algorithms such as artificial neural networks (ANN) [16],
support vector machines (SVM) [17], k-nearest neighbors
[18], decision trees (DTs) [19], and generalized linear model
(GLM) [20] have been utilized as predictive models based
on input data and labeled output data to solve the regression
problems. In addition, convolution neural network (CNN)
[21] shows high performance to solve classification prob-
lems. Unsupervised learning algorithms such as K-means
[22], hierarchical cluster analysis (HCA), and t-distributed
stochastic neighbor embedding (t-SNE) [23] have been
used to cluster data with similarity, pattern, and difference
without labeled output data (i.e., with only input data). RL,
a subset of ML, is a decision-making algorithm based on
behavioral psychology, which interacts with the environment
in discrete time steps through trial-and-error methods. RL
[24, 25] could effectively determine an optimal control strat-
egy in a random environment that provides uncertain infor-
mation; thus, RL has been widely utilized in many fields,
including energy management [26], robots [27], and automo-
bile control [28], to determine the optimal control strategy.

In this study, an adaptive electrospinning system based
on reinforcement learning (E-RL) is proposed for uniform
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deposition of nanofibers. Considering its effectiveness
in finding an optimal control strategy, RL was utilized to
achieve uniform deposition by optimally controlling the
movable collector. Among various model-free RL algo-
rithms, one of the value function-based approaches, namely
double deep Q-networks (DDQN) [24], was adopted in the
electrospinning system. The DDQN, which showed great
performance in playing Atari games [24], was designed to
find an optimal control strategy for the movement of a col-
lector to decrease the non-uniformity of the nanofiber filter.
In training the DDQN, the thickness of the nanofiber filter
was measured in real time and utilized as a state for the
DDQN. The thickness of the nanofiber filter was calculated
on the basis of the Beer—Lambert law [29] from the light
transmittance measured through a CCD camera placed at the
bottom of the collector [29], In simplifying the electrospin-
ning system into the 1D problem, a two-parallel-metal-plate
collector, which produced a nanofiber filter with the same
thickness along the y-axis, was adopted. With the incorpo-
ration of the DDQN into the electrospinning system, the
nanofiber filter with a uniform and desired thickness was
achieved by moving the collector based on the optimal con-
trol strategy obtained from the DDQN. Finally, the improved
uniformity and performance of air filtration of the nanofiber
mat fabricated by E-RL were demonstrated, and such results
were compared with those of the stationary and random
modes.

Related Studies
Thickness Measurement Technique

Measuring the thickness is an important factor in producing
nanofiber filters. Previous studies have measured the thick-
ness using thickness gauges, by direct contact or through
optical microscopes by cross sectioning the nanofiber filter.
A more accurate way is the bake—cut—microscope-measuring
method [9]. First, the nanofiber filter was embedded in the
resin to protect the nanofiber filter. Afterward, the resin-
embedded nanofiber filter was cross-sectioned, and the
thickness was measured by using an optical microscope.
Although these methods could provide an accurate thickness
of the nanofiber filter, they could damage the nanofiber filter
and degrade its functions. Furthermore, the thickness could
be only measured after the fabrication of the nanofiber filter.

Control in the Deposition of Electrospun Nanofibers

Several studies have been conducted to control the deposi-
tion of electrospun nanofibers. These studies have primarily
used external forces such as electrostatic force by manipu-
lating the electric field [30, 31], magnetic force by placing
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permeant magnets, and mechanical force by using a rotating
drum [6, 32] to achieve the controlled deposition of electro-
spun nanofibers. Although these methods have been proven
successful in producing patterned or aligned nanofiber filters
[33-35], the chaotic motion of electrospinning still hindered
the production of a uniform-thickness nanofiber filter. By
decreasing the voltage and reducing the distance between
the syringe needle and metal collector, several studies have
successfully reduced the bending instability [36] of the
jet through near-field electrospinning [37, 38] and direct-
write electrospinning [39]. However, these electrospinning
methods have low productivity and produce extremely thin
nanofiber filters, which cannot be utilized as an air filter.

Background
Reinforcement Learning

RL [40] is a type of ML algorithms for training an agent,
interacting with the environment. RL primarily consists
of an agent and environment; the agent (learner) dynami-
cally interacts with the environment and obtains a reward
based on its state. The agent selects an action a, which is the
movement of the movable collector, based on the informa-
tion about the state s in the environment at the current time
t. At a subsequent time 7 + 1, the agent receives a reward
r,, and the state s is changed to a new state (next state) s’
as a result of the action a. At each time, the agent follows
a policy z, which maps the state to the action to maximize
the cumulative reward. The policy that maximizes the cumu-
lative reward is called the optimal policy z*, and RL is a
sequential decision-making process that finds the optimal
policy z* through a series of interactions between the agent
and the environment.

In this study, the RL algorithm that is trained to minimize
the thickness variation of an electrospun nanofiber filter was
adopted. The RL algorithm assumed the electrospinning pro-
cess as the environment, and the state s was calculated on the
basis of the measured thickness of the nanofiber filter. The
agent of the RL algorithm manipulated the position of the
movable collector (action, a) based on the optimal policy for
the minimization of the thickness variation of the nanofiber
filter.

Double Deep Q-Network

Model-free RL algorithms that could identify the optimal
policy can be divided into value function-based [41] and
policy-based approaches. This study used a value function-
based approach of deep Q-network that achieved human-
level control of Atari games [24]. The deep Q-network is
grounded by training an agent based on an action-value

function that provides the expected discounted return R, for
an action a with the environment of state s. The expected

discounted return R, is defined as R = Zend Ykt with a

t k=t k
discount factor of y € [0, 1]. In this study, the discount factor
was set to 0.99. The action-value function, also called known
as the Q-function Q(s, a) (Eq. 1), represents the expected
utility of action a at a state s following policy z:

Q7 (s,a) = E[R||S, = 5,A, = d]. 1)

The optimal action is a = argmax 4, Q*(s, a). In dealing
with the high-dimensional or continuous state space, a deep
neural network was utilized to approximate the Q-function
as follows: Q(s, a) = O(s, a;0), where 6 is a parameter vec-
tor of the approximator. In estimating this network, we used
Q-learning with double deep neural networks of the main
Q-network Q(s, a;0) and target Q-network O(s, a; 07), which
is called known as double deep Q-learning or DDQN [42].
In estimating the DDQN, the main network QO(s, a;0) is
updated by minimizing the loss function Li(ﬁi) (Eq. 2) and
using the stochastic gradient descent method at iteration i:

LO)= E,,, ¢ [(r + y max Q(s’, a’;G_) — 0(s, a;@))z] .

2
Given that the rapid fluctuation of the Q-function Q(s, a)
often causes instability, the target network is frozen when
updating the main network over a given k time steps and
updated at every k time steps by copying the parameter of
the main network to that of the target network (6~ = 6).
During the learning process, the e-greedy method [43] was
utilized to balance exploration and exploitation, where the
agent selects the action with the greatest estimated value
with a probability of 1 — & (exploitation) and random actions
with a probability of e (exploration). Furthermore, the expe-
rience replay technique [44] was adopted to reduce the over-
fitting of a local region of the state space. This technique
stores previous experiences in a replay buffer, and the update
of the main network is performed using a uniformly sampled
mini-batch from the replay buffer.

Methodology
Real-Time Thickness Measurement Technique

Real-time thickness measurements were performed on the
basis of the previously reported system [45]. The flat LED
plate on top of the chamber illuminated the uniform light
to the nanofiber filter on the collector. Two cases of light
intensity with and without passing through the nanofiber
filter were measured by the CCD camera placed at the bot-
tom of the collector. In calculating the light transmittance
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of the nanofiber filter, the light intensity passing through the
nanofiber filter was divided by the measured light intensity
without the nanofiber filter. The light transmittance was con-
verted into the thickness of the nanofiber filter based on the
Beer—Lambert law (Eq. (3)).
T=e",

3

where T is the light transmittance, and 4 is the thickness of
the nanofiber filter. Based on the Beer—Lambert law and
calculated light transmittance at each pixel, the thickness of
the nanofiber filter was evaluated using Eq. (4):

h(x) = —=InT(x)/ p, )

where x is the x-axis position of the nanofiber filter cor-
responding to the pixel of the bottom image from the CCD
camera, and A(x) is the thickness of the nanofiber filter at
position x. Although the y-axis variation of the thickness can
be detected from this measurement system, the thickness of
the nanofiber filter fabricated on the basis of a two-parallel-
metal-plate collector varied only along the x-axis. Thus, the
thickness was assumed as a function of the x position.

In the validating the real-time thickness measurement
technique, the thickness of the nanofiber filter was meas-
ured by the bake—cut microscope-measuring method [9]. The

nanofiber filter was immersed in a mixture of polydimethyl-
siloxane (PDMS) monomer and curing agent at a weight
ratio of 10:1 and baked in a dry oven for 24 h at 40 °C. The
PDMS-embedded nanofiber filter was cut along the x-axis
to measure the thickness based on the cross-sectional image
by using a microscope (Olympus BX53F2, Olympus, Japan).
The proposed real-time thickness measurement based on
light transmittance could be applied to the translucent or
light-transmitting materials; thus, it could be applied to all
sorts of materials/electrospinning processes. However, con-
sidering that most of the electrospun nanofiber filters have
high porosity and thin thickness, this measurement technique
could be widely utilized for electrospun nanofiber filters.

Formulation of DDQN

A model-free RL framework of DDQN was implemented in
the nanofiber filter production system to produce a nanofiber
filter with a uniform thickness, namely, E-RL. Figure 1 illus-
trates the framework of the E-RL. The DDQN in the E-RL was
trained to find the optimal policy based on the states, actions,
and rewards. The DDQN was structured as a deep neural
network with the parameters listed in Table 1. The action of
the RL was set to the movement of the collector. Although
the collector movement has a continuous action space, the
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Fig. 1 Illustration of the DDQN-based nanofiber filter production framework (E-RL)
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Table 1 Structure of the network

Layer Number of neurons per  Activation
layer

Input layer 2% 890 Relu

Hidden layer 1 1024 Relu

Hidden layer 2 256 Relu

Drop out

Batch normalization

Hidden layer 3 256 Relu

Hidden layer 4 128 Relu

Drop out

Batch normalization

Hidden layer 5 128 Relu

Hidden layer 6 64 Relu

Hidden layer 7 32 Relu

Output layer 11 Softmax

movement of the collector was defined as a discrete action
space to simplify the E-RL. We found that if RL has a large
number of possible actions, then a single action generally
moves the movable collector with a small distance, which does
not effectively change the deposition behavior of the nanofiber
filter for the generation of the uniform-thickness nanofiber fil-
ter. In addition, if RL possesses a small number of possible
actions, then the distance gap between the possible actions is
too large to move the movable collector to the desired position.
Thus, to alleviate the non-uniformity of the nanofiber filter,
an action space of the movable collector was set 11 equally
spaced positions through trial and error. The states of the RL
were designed on the basis of the thickness of the nanofiber
filter and the difference between the current thickness and the
previous thickness before the one step. The thickness of the
nanofiber filter provided the information about the non-uni-
formity of the nanofiber filter. Moreover, the thickness differ-
ence provided the information about the deposition behavior of
electrospun nanofibers. Based on the current state and action,
the immediate reward, r(s), is defined using Eqgs. (5) and (6).

if E[h )] <h,

_f 1—var [hs(x)] ©)
o= { =hp/N. i 1= varfh ] <0°

if E[hx)] > h,
rs) = { 1 — var[hy(x) — h,| . ’
-1, if 1—var[h()—h] <0

(6)

where /,(x) is the current thickness of the nanofiber filter in

the state s; £, is the target thickness of the nanofiber filter,

and N represents the maximum possible number of steps

that can be taken in one episode. In the case of the target

thickness of 10 pm, the maximum possible number of steps,
N, was set to 1000. The reward system was designed as fol-
lows. During the nonterminal state (E [/,(x)| < h,), a reward
of r(s) = 1 — var [hx(x)] was assigned, and if var [hs(x)] was
higher than 1, then the reward of r(s) = —ht2 /N was assigned
as a penalty for the unnecessary increase in the total steps.
At the terminal state when the average current thickness
E [hs(x)] in the state s exceeds the target thickness #,, a ter-
minal reward is assigned, exhibiting the highest value of 1
when the current and target thicknesses are exactly the same
and decreasing by the variance of the difference between
hy(x) and h,. In addition, if the variance of the difference
between h(x) and A, is higher than 1, then the fabricated
nanofiber filter is considered non-uniform, and the terminal
reward is assigned as — 1. As the variance of the difference
between £,(x) and &, decreases, the thickness of the nanofiber
filter becomes more uniform, and the reward reaches 1.
Numerous electrospinning over 100,000 times is required
to train RL. Considering that a single electrospinning pro-
cess takes around 30 min, the training of the RL through
experiments needs 50,000 h (around 6 years). Thus, as a
method to dramatically reduce the time required for training
the RL, production simulator software was developed. The
production simulator software was designed on the basis of
the empirical model of the deposition behavior of electro-
spun nanofibers on the two-parallel-metal-plate collector.
The production simulator software was used to collect data-
sets consisting of s, a, r, and s’ for training, and they were
saved in the replay buffer before the training. During train-
ing, the mini-batch was randomly selected from the replay
buffer to calculate the loss function. In evaluating the loss
function, the mini-batch was used to calculate Q(s, a; Hi) in
the main Q-nerwork and may , Q(s’, da Ql—) in the target
QO-network. Subsequently, the main Q-network is updated by
minimizing the loss function by using the gradient descent
method with a learning rate « of 0.00025. The learning rate
is defined as the size of a gradient descent step. However,
considering that the optimal policy is not derived with only
one step of training, the dataset collection and training pro-
cess were repeated until the optimal policy was obtained

(Fig. 1).

Experimental Sections
Nanofiber Filter Production System

The schematic and photograph of the nanofiber filter pro-
duction system are shown in Fig. 2a, b, respectively. The
detailed configuration of the proposed nanofiber filter
production system, which is similar to our previous study
[45], includes a nanofiber generation system, movable
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Syringe pump

LED plate

CCD Camera \
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Mcu Motor
Controller

High voltage
supplier

Syringe,

Fig.2 a Schematic and b photograph of E-RL. Photograph of a movable two-parallel-metal collector without (¢) and with nanofiber filter (d)

metal collector, and real-time thickness measurement
system. The nanofiber generation system has a configura-
tion similar to that of the conventional electrospinning of
a syringe pump (NE300, New Era, USA), a 3 mL plastic
syringe with a 23-gauge metal needle, a high-voltage sup-
plier (HV30, NanoNC, South Korea), and an electrospin-
ning chamber. Its key feature is the movable metal collec-
tor composed of a two-parallel-metal-plate collector with
a 3 cm width, a 3D-printed collector holder, and an auto-
matic XY stage. The movable collector is shown in Fig. 2c,
d. The width of a two-parallel-metal-plate collector could
be larger as shown in Fig. S3. Because the electrospinning
time was exponentially increased as widening the width of
the nanofiber filter, the effective width for the two-parallel-
metal-plate collector would be below several centimeters.
The real-time thickness measurement system consists of a
flat LED plate located on top of the electrospinning cham-
ber and a CCD camera (oCam-1CGN-U-T, WITHROBOT,
South Korea) located below the movable collector.

@ Springer

Nanofiber Filter Production

Nanofiber filter production was conducted on the basis of
a previous study [46]. Gelatin from bovine skin (type B,
Sigma-Aldrich, USA), polycaprolactone (PCL) pellets
(Mn=280,000 g mol™!, Sigma-Aldrich, USA), 2,2,2-tri-
fluoroethanol (TFE), and acetic acid were used for PCL/
gelatin solutions. 10% w/v PCL/TFE and 10% w/v gelatin/
TFE were prepared, and then the solutions were mixed in a
50:50 mass ratio with 10 pL of acetic acid (0.1% of TFE).
The mixed solutions were stirred for 12 h prior to process-
ing to ensure thorough mixing. The PCL/gelatin solution
was placed in a 3 mL plastic syringe with a 23-gauge metal
needle and ejected through the metal needle at a constant
flow rate of 0.5 mL h™! using a syringe pump. After connect-
ing a (+) electrode to a metal needle and a (—) electrode to
the movable collector, 20 kV was applied between the two
electrodes to deposit the nanofibers on the movable collector
and form a nanofiber filter. When a high voltage is applied
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between the metal needle and the movable collector, a Taylor
cone is induced at the tip of the metal needle, and a polymer
jet is ejected from the tip of the Taylor cone. Given the high
voltage, the polymer jet carries a high surface charge, caus-
ing electrostatic repulsion and bending instability. Its diam-
eter is decreased to the nanoscale by electrostatic repulsion
and solvent evaporation, thereby forming nanofibers. The
bending instability causes the nanofibers from the polymer
jet to be randomly deposited on the collector. Consequently,
if the movable collector is stationary, then the nanofiber filter
has been frequently produced with a non-uniform thickness.

Production Simulation Software

The simulator software was developed on the basis of the
empirical model of the deposition behavior of electrospun
nanofibers on the two-parallel-metal-plate collector. The
deposition behavior was assumed to be a Gaussian distribu-
tion with an altering center and a standard deviation [45]. By
empirically acquiring the parameters for the altering center
and standard deviation of the Gaussian distribution, the soft-
ware simulated the deposition of a nanofiber filter produced
by the nanofiber filter production system, thereby generat-
ing a bottom-view image of the nanofiber filter similar to
that from a CCD camera. The light transmittance calculated
using the bottom-view image was converted into thickness
using the Beer—lambert law.

Performance Evaluation of the E-RL

After training the simulation software, the DDQN model
was transferred to the production simulation software and
E-RL with a target thickness of 10 um. The performance of
the E-RL was numerically and experimentally confirmed
by comparing it with the stationary and random modes. In
the stationary mode, the collector accumulated electrospun
nanofibers in a fixed center position without any movement.
In the random mode, the collector moved in random direc-
tions during electrospinning. Finally, in the DDQN mode,
the collector moved in accordance with the optimal action
obtained from the trained DDQN model based on the meas-
ured thickness of the nanofiber filter.

Air Filtration

The air filtration efficiency of the nanofiber filter fabri-
cated through electrospinning was measured at four posi-
tions: first, second, third, and fourth of the nanofiber filter.
Incenses were burned to generate aerosol particles, and the
existence of PM2.5 was confirmed by using optical particle
size (Model-3330, TSI) as shown in Fig. S4. The PM parti-
cles, which were produced by burning incense, flowed from

the right to the left beaker and then filtered at each position
of the nanofiber filter. In measuring the concentration of
incident and filtered PM2.5, laser particle sensors (PM2008,
CUBIC, China) were positioned in the right and left beakers.

Results and Discussion
Nanofiber Filter Production

Electrospinning on a two-parallel-metal-plate collector pro-
duced nanofiber filter on and in-between two metal plates.
Figure 3a shows the bottom-view image of the nanofiber
filter obtained using the CCD camera. The bright region
of the bottom-view image showed high light transmittance
and low thickness, whereas the dark region showed a lower
light transmittance and thicker nanofiber filter. Thus, the
gradation of the color of the bottom-view images indicates
the non-uniform thickness of the nanofiber filter. Given that
the two-parallel-metal-plate collector generally produced
aligned nanofiber filters [47], the variation of the light
transmittance and thickness in the y-axis direction would
be negligible. Thus, the thickness of the nanofiber filter was
simplified as a function of the x-axis position. Due to the
bending instability and varying jetting direction of the mul-
tiple modes of jet, the deposition behavior of electrospun
nanofibers was inconsistent as shown Fig. S5. Such incon-
sistent deposition behavior would not be easily modeled by
conventional control theory, and thus, the RL algorithm was
adopted to control the deposition of electrospun nanofibers.
Figure 3b shows the conversion of light transmittance to the
thickness of the nanofiber filter using the Beer—Lambert law
along the x-axis. The nanofiber fabrication of the nanofiber
filter production system was confirmed through the SEM
image of the nanofiber filter (Fig. 3c).

Real-Time Thickness Measurement System

In measuring the thickness of the nanofiber filter, many
studies embedded the nanofiber filter in PDMS and
measured the thickness of the nanofiber filter from the
cross-sectional view [9]. However, the embedding pro-
cess damaged the nanofiber filter and hindered its utili-
zation as a porous membrane for air/liquid filter, battery
separator, and biomedical scaffold. As a non-destructive
technique, the transmitted light through the nanofiber
filter was measured and converted into the thickness of
the nanofiber mat based on the Beer—Lambert law, which
states the relationship between the attenuation of light and
thickness of the medium (Fig. 3d). For simplification, the
nanofiber filter was assumed as a homogenous medium.
By fitting a curve to the measured data of the light trans-
mittance and the thickness (Fig. 3e), we calculated the
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Fig.3 a Bottom-view image of the nanofiber filter, the scale bar indi-
cates 1 cm, and b is converted to the thickness of the nanofiber filter
along the x-axis by Beer—Lambert law. ¢ SEM image of nanofiber fil-

attenuation coefficient u of 0.058 um~'. Approximately,
83% of the measured thickness data were in the area with
a+20% deviation of u (Fig. 3e). When the thickness of the
nanofiber mat became 30 pm, the resolution was around
0.77 um because the CCD camera has an image depth of
8-bit. When a higher-bit depth CCD camera and brighter
light source are used, higher resolution in the thickness
measurement can be achieved even with thicker nanofiber
filter.

Changes in electrospinning parameters such as applied
voltage, flow rate, viscosity, solvent, solution concentra-
tion, temperature, and humidity influence the property
of electrospun nanofibers such as diameter, density, and
porosity, and affect the transmission of light through
the nanofiber filters. The attenuation coefficient of the
Beer—Lambert law was determined based on the property
of electrospun nanofibers. Thus, by finding an appropriate
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ter. The scale bar indicates 10 pm. d Schematic for real-time thick-
ness measurement based on Beer—Lamber law and e Curve of the
light transmittance versus the thickness of nanofiber filter

attenuation coefficient for each solvent, the thickness of
the nanofiber filter produced with different solvents would
be estimated based on the Beer-Lambert law.

Training of the DDQN

The computer consisted of Intel® Core™ i5-8500 CPU @
3.00 GHz and NVIDIA GeForce RTX3060 GPU. The RL
algorithm was achieved with Python version 3.8.10. under
the visual studio code framework. The training process was
repeated 100,000 times and took around 4 days. In evaluat-
ing the uniformity of a produced nanofiber filter during train-
ing, the terminal variance, which is the variance between the
target thickness and the current thickness at the end of the
fabrication, was introduced. The terminal variance was nega-
tively correlated with the non-uniformity of the nanofiber filter
thickness. When the thickness of the nanofiber filter is the
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same as the target thickness and perfectly uniform, the termi-
nal variance becomes 0. However, as the non-uniformity of
the nanofiber filter increases, the terminal variance increases
by the amount of variance between the target and the current
thickness of the nanofiber filter. Figure 4a, b shows the change
in terminal variance in the case of stationary, random, and
DDQN modes during training. The training of DDQN was
conducted as the episode processed (Fig. 4a). As shown in
Fig. 4a, in the beginning of the training process, the high value
of the terminal variance was observed, but low terminal vari-
ance was consistently achieved after 95,000 episodes because
of continuous training. The terminal variance of the suffi-
ciently trained DDQN mode (from 95,000 to 95,999 episodes)

was compared with that of the other modes (Fig. 4b). In the
stationary mode, the terminal variance was maintained at a
high value throughout all the episodes. In the random mode,
the terminal variance fluctuated between the high terminal
variance of the stationary mode and the low terminal variance
of the sufficiently trained DDQN mode. However, the random
mode could hardly ensure the reliability of the uniformity of
the nanofiber filter thickness because the terminal variance
significantly varied at each episode. In contrast, the trained
DDQN mode produced uniform-thickness nanofiber filters
with a low terminal variance during more than 1000 episodes.
This result demonstrated that the E-RL has a superior ability
to produce a uniform nanofiber filter, validating the effective-
ness of the DDQN to determine the optimal policy (Fig. S6).

DDQN-Based Simulation Model

After transferring the trained DDQN to the nanofiber pro-
duction simulation software, the performance of DDQN
mode was verified by comparing it with the stationary and
random modes. Figure 5 shows the bottom-view image
of the nanofiber filter generated by the numerical simula-
tion with and without DDQN. In the stationary mode, the
bottom-view images of the nanofiber filter show enlarged
gradation as the number of steps increased, which indicates
that electrospun nanofibers were non-uniformly accumulated
on the collector (Fig. 5a). In the random mode, the grada-
tion of the bottom-view images of the nanofiber filter was
slightly alleviated compared with that of the stationary mode
(Fig. 5b). In the DDQN mode, the bottom-view images of
the nanofiber filter show a high level of uniformity through-
out all the steps (Fig. 5¢). These results indicated that the
DDQN mode exhibited superior performance in producing
a uniform-thickness nanofiber filter.

For quantitative analysis, Fig. 5d, e shows the standard
deviation and normalized squared error (NSE) with and
without DDQN. The degree of uniformity was determined
using the standard deviation value of the nanofiber filter.
In the stationary mode, the standard deviation continu-
ously increased at the highest rate. In the random mode, the
increased rate of the standard deviation was lower than that
of the stationary mode, but it eventually increased. In the
DDQN mode, the standard deviation was lower and stead-
ier than that in the other two modes. The NSE in the three
modes also showed similar trend of the standard deviation
results. The NSE decreased at a similar rate before approx-
imately 60 steps for all cases. However, in the stationary
mode, the decrease of the NSE eventually stopped, and the
NSE increased after approximately 60 steps. In the random
and DDQN modes, the NSE continuously decreased until
the end of the episode. However, in the random mode, the
terminal value was higher than that of the DDQN mode.
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(c). d Comparison of the standard deviation (o) and e normalized squared error (NSE) between the three modes. All scale bars indicate 1 cm

Adaptive Electrospinning System
for Uniform-Thickness Nanofiber Filter

The performance of the DDQN mode was experimentally
validated by the transfer learning of the trained DDQN into
the electrospinning system, namely, E-RL. Figure 6 shows
the bottom-view images experimentally obtained from the
nanofiber filter production system in the stationary, ran-
dom, and DDQN modes. The experimental results from the
nanofiber filter production system showed a similar trend
as that of the numerical simulation. In the stationary mode,
the bottom-view images of the nanofiber filter exhibited
the highest non-uniform gradation throughout all the steps
(Fig. 6a). In the random mode, the bottom-view images
showed a non-uniform gradient, but they were slightly more
uniform than in the stationary mode (Fig. 6b). In the DDQN
mode, the bottom-view images of the nanofiber filter showed
a high level of uniformity regardless of the step (Fig. 6¢c).
Figure 6d shows the standard deviation of the thickness
of the nanofiber filter produced based on the stationary, ran-
dom, and DDQN modes. In the stationary mode, the stand-
ard deviation was continuously increased, and it showed the
highest value at the end of the step. In the random mode,
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although the standard deviation values slightly decreased, it
showed a higher trend than the DDQN mode. In the DDQN
mode, the standard deviation was continuously lower than
1. At the end of the steps, the standard deviation of the
nanofiber filter thickness with the DDQN mode was approxi-
mately five times lower than that of the stationary mode and
two times lower than that of the random mode. Figure 6e
shows a graph of the NSE for the three modes. In the station-
ary mode, the NSE initially decreased and gradually satu-
rated at a certain value. In the random and DDQN modes,
the NSE continued to decrease at a similar rate. However,
the NSE of the random mode was higher than that of the
DDQN mode similar to the results obtained from the simula-
tion model. The NSE ultimately decreased five times lower
in the DDQN mode compared with the stationary mode and
two times lower than the random mode, which indicates that
the E-RL showed an outstanding ability to produce a uni-
form nanofiber filter.

The production performance of a uniform-thickness
nanofiber filter could be explained by the following reasons.
In the stationary mode, the nanofibers largely accumulated
in a narrow area of the collector following a Gaussian dis-
tribution. In the random mode, the nanofiber filter thickness



Advanced Fiber Materials

a b
Step = 40 Step = 50

C
Step = 55

Step = 80 Step = 100

Step = 110

Step = done Step = done

Step = done

d e

6

~——Stationary
5 1 ~——Random
—DDQN

0 50 100 150 200
Step

Fig.6 Performance evaluation of the nanofiber filter production in
real time during electrospinning. Bottom-view images of the station-
ary mode (a), random mode (b), and DDQN mode (c). d Compari-

was slightly more uniform than that in the stationary mode
because of the random movement of the collector. However,
the nanofibers remained non-uniformly accumulated on the
collector because the collector moved without a specific
strategy. In the DDQN mode, the nanofibers were uniformly
accumulated because the RL-based moving collector fol-
lowed the optimal policy.

Air Filtration of the Nanofiber Filter

For comparison of three modes of the stationary, random
and DDQN modes, an air filtration experiment was con-
ducted. The air filtration experimental setup and schematic
of the nanofiber filter with four positions are shown in
Fig. 7a, b, respectively. The thickness and filtration effi-
ciency at four positions with one-representative sample
are presented in Fig. 7c. In the DDQN mode, the filtration
efficiency at the four positions exhibited high and uniform
performance, while in the other two modes, the filtration
efficiency at the fourth position is much lower than that at
the other three positions. By comparing the thickness of
each position and the filtration efficiency, we confirmed

NSE
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~—DDQN

0.6 A

0.4 4

0.2 1

0 T T T
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Step

son of standard deviation (¢) and e normalized squared error (NSE)
between the three modes. All scale bars indicate 1 cm

that the uniformity of the thickness of the nanofiber fil-
ter affects the uniformity of the filtration efficiency for
each position. Figure 8 shows the standard deviation of
thickness and filtration efficiency among four positions
for each mode. The standard deviation of thickness among
four positions for the DDQN, random, and stationary mode
was 0.747, 1.386, and 3.608, respectively. The standard
deviations of the filtration efficiency for the three modes
were 2.004, 11.5, and 22.552, respectively. The standard
deviation of the filtration efficiency of the DDQN mode
was approximately 5.74 and 11.3 times lower than that of
the random and stationary mode, respectively. This result
indicated that the non-uniform thickness of the nanofiber
filters produced with the stationary and random modes
detrimentally affected the filtration efficiency. Further-
more, the thickness difference causes the flow concen-
tration toward the thin—thickness region that showed low
filtration efficiency and rapid degradation in filtration per-
formance of the nanofiber air filter. Thus, the suggested
E-RL is effective in producing a uniform nanofiber filter
for the uniform performance of the air filter. Furthermore,
apart from the uniformity, the E-RL produces electrospun
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Fig.7 a Photograph of the setup of the filtration experiment and b
schematic of the nanofiber filter test. ¢ The filtration efficiency and
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Random Stationary
Mode

thickness at the first, second, third, and fourth positions for the station-
ary, random, and DDQN mode

nanofiber filters with superior air filtration, considering
that many previous studies on nanofiber filters have shown
high-efficiency air filtration.

Conclusion

In this study, E-RL was developed to produce uniform-thick-
ness nanofiber filters. The E-RL accomplishes the real-time
measurement of thickness by using the Beer—Lambert law,
which has an exponential relationship between light trans-
mittance and thickness. Using the production simulation
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software, the training process could be accelerated, and the
DDQN was trained to determine the optimal policy, which
was the movement strategy for the collector to minimize the
standard deviation and NSE of the thickness uniformity. The
trained DDQN model was applied to the production simu-
lation software and E-RL. Consequently, the uniformity in
the thickness of the nanofiber filter was evidently improved
for both cases—production simulation software and E-RL.
Therefore, the E-RL is expected to greatly improve the pro-
ductivity and reliability of the nanofiber filter.

E-RL was applied to electrospinning with a two-parallel-
metal-plate collector, which could be simplified into the
1D case. For application to a wider range of industries and
research fields, the scaling up is one of the important issues
of E-RL. However, applying the real-time thickness meas-
urement to larger collectors, such as 2D metal collectors, is
extremely difficult. One way to overcome such limitations
is the implementation of a transparent collector, such as a
transparent film (e.g., ITO film), metal mesh collector, and an
electrolyte solution, to achieve real-time thickness measure-
ment of 2D nanofiber filters for E-RL. By adopting this idea,
E-RL could be incorporated with the electrospinning process
on a larger transparent collector. Furthermore, the transparent
film or metal mesh is expected to be applied to scaled-up elec-
trospinning system such as a continuously running conveyor
belt and a needless spinning system. Considering the wide
utilization of electrospun nanofiber filters, the implementa-
tion of the E-RL to the scaled-up electrospinning system will
have a broad impact in the field of electrospinning and related
application in both industries and research.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s42765-022-00247-3.
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